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Abstract

A computational study of turbulent natural convection in a side-heated near-cubic enclosure at a high Rayleigh
number (Ra = 4.9 x 10'%) is performed, aimed at gaining a better insight into the flow pattern, particularly in the
corner regions. Two types of thermal boundary conditions are applied at the horizontal walls: adiabatic and iso-
thermal. Also, two kinds of lateral vertical walls are studied, corresponding to different experimental approximations
of adiabatic conditions: the first by insulation and the second by imposing a stratified wall heating. The latter
conditions ensure better flow two-dimensionality, with the temperature stratification on the vertical walls close to that
expected in the parallel mid-plane. Computations are performed with both a two-dimensional (2D) and three-
dimensional (3D) code using a low-Reynolds-number differential second-moment stress/flux closure and the related
k—&¢ model (KEM) simplification. The numerical computations show that the second-moment closure (SMC) is better
in capturing thermal three-dimensionality effects and strong streamline curvature in the corners. The KEM, however,
still provides reasonable predictions of the first moments away from the corners. © 2001 Elsevier Science Ltd. All

rights reserved.

1. Introduction

The EUROTHERM/ERCOFTAC Workshop
“Benchmark Computation and Experiment for Turbu-
lent Natural Convection in a Square Cavity” [1] revealed
that, despite simplicity in geometry and boundary con-
ditions, computational predictions with various models
showed significant discrepancies between each other and
with the experimental results. Based on this experience,
two important conclusions can be drawn: first, there is a
lack of experimental cavity data suited for validation of
turbulence models and numerical computations and,
second, the available Reynolds-averaged Navier—Stokes
(RANS) turbulence models are not adequate for con-
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fined buoyancy-driven flows. 2 In the meantime, some
improvements in modelling buoyancy-driven flows have
been reported, primarily at the level of algebraic stress/
flux modelling, see e.g. [2-4]. The study by Dol et al. [2]
revealed serious shortcomings of the eddy-diffusivity
approach to model buoyancy-driven flows. It also
showed that the algebraic stress/flux models fail to re-
produce the individual terms in the transport equations
in accord with direct numerical simulations (DNS) and
that a straightforward analogy with the modelling
practice for isothermal turbulent flows and its simple
extrapolation to model buoyancy effects fails in many
respects. Recently, a systematic term-by-term derivation
of a thermal second-moment closure (SMC) model,
based on DNS results for turbulent natural convection

2 The models presented in [1] include a variety of two
equation eddy-viscosity k—¢ closures with wall functions, their
low-Reynolds-number variants and with some modifications
for buoyancy. Also, the application of two differential and
several algebraic second-moment models were reported.
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Nomenclature

D depth of cavity

g gravitational acceleration vector (0, —g,0)
H height of cavity o

k turbulent kinetic energy, 1u?

L width of cavity

I integral length

n; wall-normal unit vector

P pressure

Pr Prandtl number, v/a

Ra Rayleigh number, gfATH?Pr/v?
Re, turbulence Reynolds number, &%/(ve)
T temperature

T temperature fluctuation

Ty average temperature (Thor + Teold)/2
Teold cold-wall temperature

Thot hot-wall temperature

Tret reference temperature

t time

U; velocity vector (U, V, W)

U, wall-friction velocity (ty/ p)l/ 2

u; velocity-fluctuation vector (u, v, w)
uv turbulent shear stress

" buoyant velocity (gfATH )/

X; Cartesian coordinate vector (x,y,z)
Xn shortest distance to the nearest wall

Greek symbols

o thermal diffusivity

p volumetric thermal expansion coefficient,
/T,

€ dissipation of k&

e dimensionless temperature (7 — Tooa) /AT,

AT = Tor — Teola

0, ¢ angles

v kinematic viscosity
o mass density

Ty wall shear stress, pv|0U,/0x,|,,
Subscripts

b buoyant

m mechanical

n wall-normal

p wall-parallel

rms root-mean-square
S stress

t turbulent

th thermal

w wall value

in a vertical infinite plane channel, was reported by Dol
et al. [5]. The simplicity of the geometry and boundary
conditions of such a channel flow, which can be com-
puted accurately with standard numerical methods, al-
lowed to focus on details of the turbulence modelling of
each term in the transport equations. Further testing of
this model should be done in other situations, primarily
with heating from below. Although the term-by-term
based model of Dol et al. [5] is certainly appealing, for
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the computation of complex high Rayleigh number
three-dimensional (3D) flows it requires a fine numerical
grid in regions adjacent to solid walls and, consequently,
significant computational effort.

The aim of the work reported here was to perform
full 3D computations with one of the popular low-
Reynolds-number k—& models (KEMs) and with a low-
Reynolds-number differential second-moment stress/flux
closure, using realistic boundary conditions. Although
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Fig. 1. A schematic picture of the cavity (a) and the plane at z/D = 0.5 (b). In the latter, possible thermal boundary conditions and
examples of streamlines (left half, circulating clockwise) and isotherms (right half) are depicted.
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the models chosen may not be the current ‘state-of-the-
art’, a comparative analysis of the effects captured or
ignored by these two distinct classes of models is ex-
pected to provide useful information on the model per-
formance for this class of flows and to indicate possible
directions for model improvements. The experiments
used are those reported by Opstelten [6] and Dol et al. [7]
for the side-heated near-cubic enclosure (H=L=1.5D)
depicted in Fig. 1. As compared with earlier published
experimental investigations in similar cavities [8,9], these
experiments ensured better two-dimensionality, which
reduces the uncertainty in the interpretation of results
and makes them suitable for two-dimensional (2D)
model validations. The thermal boundary conditions,
which are often the origin of deviations between
measurements and computation results, are better
defined. The Rayleigh number considered, Ra = 4.9 x
10'°, was sufficiently high to reduce the importance of
the laminar-to-turbulent transition in the downstream
corners, which were in focus of our study. The tem-
perature difference was kept sufficiently low to neglect
the temperature dependence of fluid properties, elimi-
nating thus any hereto related uncertainty.

The experimental boundary conditions are used to
perform 2D and 3D computations for various situa-
tions, using the Peeters and Henkes [10] SMC with (and
without) the Craft and Launder [11] wall-reflection
model and using the Chien [12] KEM, both including
low-Reynolds-number and near-wall modifications. The
finite-volume numerical computations, with a fine stag-
gered grid and higher-order schemes, ensure confidence
in the computational results, enabling thus far a reliable
validation of the turbulence models used.

2. Numerical computations

The applied numerical methods and turbulence
models are all adopted from existing literature. Hence,
we give here only a brief outline of major features of the
method used.

2.1. Governing equations and discretization method

The flow considered is described mathematically by
the RANS equations, including the averaged energy
equation for the mean temperature field that drives the
flow by the buoyancy force. The transport equations
have been simplified using the Boussinesq approxima-
tion, which is valid for fluids with Prandtl numbers close
to 1 (for dry air Pr=0.71) and a sufficiently small
overheat ratio. The comparison of 2D computational
results obtained with and without using the Boussinesq
approximation (for details see [1]) shows a negligible
difference in the vertical velocity profiles at y/H = 0.5
for the present boundary conditions. Applying the

Boussinesq approximation, the Reynolds-averaged
equations for mass, momentum and energy conservation
reduce to:

oy _
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The turbulent stress #u; and heat flux 7"u; are provided
from the turbulence closure models, which are discussed
below. The resulting equations are discretized using the
finite-volume method. The cavity is “filled” with a non-
uniform rectangular staggered grid with a very fine
spacing near the heated vertical walls needed for accu-
rately resolving the steep gradients in the thin buoyancy-
driven boundary layers. All variables are calculated
straight up to the walls, applying the models with low-
Reynolds-number and near-wall modifications. Homo-
geneous Dirichlet boundary conditions are applied at all
walls for all variables, except for the temperature and
the pressure, of which the latter does not need any
boundary conditions.

Second-order accurate central discretization is used,
except for the convection terms, where a second-order
accurate bounded upwind scheme is adopted. This
bounded upwind scheme belongs to the class of TVD/
MUSCL schemes described by Hirsch [13]. For all
variables, the upwind scheme is based on the two nearest
upstream grid points (known as the linear upwind dif-
ferencing scheme, LUDS). Van Leer’s TVD limiter [14],
which keeps the solution locally bounded, is applied to
the velocity components and the temperature, while the
‘minmod’ type (see [13]) is applied to the turbulence
variables. As the limiters are non-linear, which is es-
sential for global second-order accuracy, the TVD/
MUSCL scheme is implemented in a deferred-correction
manner: deviations from the first-order upwind scheme
were lumped into the source term. For more details, see
[15].

Numerical accuracy was checked by monitoring the
variables and residuals during the iteration process (see
below) and by refining the grid from 90 x 60 to
120 x 80, 150 x 100 and 180 x 120 for 2D computa-
tions. Unless explicitly stated otherwise, the presented
results are always for the finest grid. In case of the 3D
computations, the finest grid consisted of 90 x 60 x 30
cells. Consequently, full grid independence is not
claimed for the 3D calculations. Nevertheless, useful
qualitative information can be obtained by comparing
the 3D computation results with the 2D ones obtained
on the coarsest grid. When the problem is symmetric
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with respect to the centre line at (x/L,y/H) = (0.5,0.5),
which is the case when experimental boundary con-
ditions are not applied, only half of the domain needs to
be calculated. For the 3D calculations, the computa-
tional domain can be (further) reduced by 50% when the
thermal conditions allow symmetry with respect to the
plane at z/D = 0.5.

2.2. Iteration method

Although the computations performed in this study
all aim at a steady solution, a fully implicit first-order
time integration is used to obtain this solution, the time
marching thus serving as a kind of under-relaxation.
Hence, the transient terms are kept in the discretized
equations and the computations are started from the
best initial guess available (different turbulence model,
grid size or Rayleigh number, first-order upwind). The
pressure field is solved using the SIMPLE method and a
preconditioned conjugate gradient solver applied to the
whole domain. All other variables are solved using a
line-Gauss—Seidel procedure, sweeping alternatingly in
the horizontal direction within z-planes, the latter being
traversed forward and backward in the spanwise direc-
tion in case of 3D computations. The computations are
considered to be converged when the maximum absolute
change per iteration of the solution and the maximum
absolute finite-volume residuals are below prescribed
thresholds. In addition, visualizations of the streamlines,
isotherms and other isolines are monitored during the
iteration process.

2.3. Turbulence models

The turbulence models used to close the RANS
equations in the present work are the low-Reynolds-
number KEM of Chien [12] and the SMC of Peeters and
Henkes [10].

The KEM of Chien [12] is based on the standard
KEM model with low-Reynolds-number and near-wall
modifications. The model is similar to the Jones and
Launder model, but with damping functions expressed
in terms of both the turbulence Reynolds number
Re, =k*/(ve) and wall distance x} =x,U./v. The ¢
equation contains an additional term expressed also as a
function of x}. While the use of wall distance seriously
limits the application of the Chien model to only regular
geometries (the treatment of corners in the present study
is already somewhat problematic), its computational
robustness offers decisive advantage as compared with
physically sounder or more advanced but computa-
tionally more demanding models. Another simplification
in the present work is the use of the isotropic eddy-dif-
fusivity to provide the turbulent heat flux (‘simple
gradient-diffusion hypothesis’), i.e., T'u; = —(v/or)0T/
Ox;, which was shown to have serious deficiencies in

capturing the thermal turbulence field both for heating
from below and from sides, see e.g., [3,16]. Nevertheless,
the Chien model is adopted here because the k—& com-
putations are only used to illustrate principal differences
in performance of the eddy-diffusivity and second-mo-
ment modelling approaches.

In the SMC, the modelled transport equations for the
turbulent stress #u; and heat flux 77u; are solved to close
the mean equation set (2) and (3). The model of Peeters
and Henkes [10], used in this work, is based on the basic
high-Reynolds-number Reynolds-stress model of Gib-
son and Launder [17] and on the flux model of Launder
[18] for forced heat convection in which the buoyancy
terms are introduced. In addition to retaining molecular
diffusion in all equations, low-Reynolds-number and
near-wall effects are introduced by adopting the modi-
fications of the ¢ equation of Chien [12] and with some
additional interventions. The complete model (see Ref.
[10]) is summarized in Appendix A, and it will suffice
here only to outline its major features:

(i) The stress dissipation tensor &; is adopted from
[19], with near-wall values expressed in terms of
turbulent stress components, wall distance and
wall-normal unit vectors.
(ii) The coefficient c,; in the ¢ equation, associated
with the buoyancy production, is evaluated from
the expression c¢,; = tanh|cot(0)|, where 0=
Z(Ui,gi) (no summation), leading to c¢;~ 1 in
the vertical boundary layers, and c;; ~ 0 in the
horizontal flows, with a smooth transition in be-
tween.
(iii) Two versions of the wall-reflection model are
considered: the original Gibson and Launder [17]
model and the model of Craft and Launder [11].
The latter was originally designed to improve pre-
dictions in stagnation regions, as encountered in
impinging jets, and is regarded here as a better ap-
proach to modelling the flow in cavity corners.
(iv) The nearest wall distance, used in both wall-
reflection models, is computed from the harmonic
mean of distances from all surrounding walls, inte-
grating the reciprocal of the distance over the space
angle ([15], see also Appendix A).
In the following text, the abbreviations SMC-PH will be
used for the model of Peeters and Henkes [10] and SMC-
CL for the same model but extended with the impinging-
jet correction of Craft and Launder [11].

Admittedly, both variants of the SMC model used
have a number of deficiencies, to mention the simple
linear model for the pressure—strain term with constant
coefficients in both the wu; and T"u; equations (no low-
Reynolds-number and near-wall modifications, except
through the inclusion of viscous diffusion and modifi-
cations of the ¢ equation). Despite these simplifications
and relatively robust but less exact treatment of the
near-wall asymptotic behaviour, the computations with
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the SMCs cause much more numerical difficulty than
with the KEM. It should also be noted that the full SMC
for convective heat transfer entails the solution of 13
differential transport equations for a 2D flow and 17 for
a 3D flow, even if only one length-scale-providing
equation is considered, here for . Besides, the set of
SMC equations have to be stabilized using additional
source-term relaxation, staggering of the grid points and
introduction of a pseudo eddy-viscosity in the mean
momentum and energy equations, which are provided
from the KEM expressions. For all these reasons, the
use of a full SMC for complex industrial 3D buoyancy-
driven flows is still not a viable option. For such a
purpose, the algebraic models, derived by ‘truncation’ of
differential stress/flux models, seem a better alternative
(see e.g., [3.4]). Nevertheless, the computations reported
here can serve as useful, though to a certain degree only
qualitative, information about the predictive per-
formance of an SMC for a relatively complex 3D flow
problem and its comparison with a typical KEM.

3. Results

In presenting the results, a distinction is made be-
tween 2D and 3D computations. Although we start with
the 2D results, the main focus is on the 3D computa-
tions, which are especially interesting for the following
reasons:

(1) To the authors’ knowledge, these are the first
computational results for a side-heated 3D cavity
obtained using a fully differential SMC for both
the Reynolds stresses and the turbulent heat fluxes,
integrated up to the wall.

(ii) The computations are performed using realistic
boundary conditions obtained by experiments,
eliminating thus far any ambiguity related to poss-
ible mismatching of the computational boundary
conditions.

(iii)) The confirmed validity of the Boussinesq ap-
proximation eliminates any doubt that a possible
departure from it may have caused a discrepancy
between the Boussinesq-based computations and
the measurements.

(iv) The availability of measured boundary and
field data allows to detect true effects of thermal
and mechanical three-dimensionality and to judge
the ability of the KEM and the SMC to reproduce
these effects.

3.1. Two-dimensional computations

The application of adiabatic conditions at the hori-
zontal walls has been customary in studies of side-heated
natural convection for a long time. Such a configuration
was expected to minimize the thermal influence of the

horizontal walls on the flow, giving full attention to the
vertical boundary layers. 2D computations for such an
adiabatic configuration (with isothermal vertical walls
and adiabatic horizontal ones) for Ra = 5 x 10'" were
reported earlier by Dol et al. [20]. These 2D results were
compared with experimental data available at that time,
obtained with insulated lateral walls (passive case, see
next section). The adiabatic results for isotherms and
streamlines are shown in Fig. 2 by solid lines. The dif-
ferences between the KEM and the SMC for the velocity
and temperature appeared to be quite large in the corner
regions, where the vertical boundary layers impinge on
the horizontal walls. The DNS data of Janssen [21] and
the experiments of Opstelten [6] supported qualitatively
the SMC computational results. The impinging bound-
ary layers carry in their outer regions the entrained fluid
that is colder than the local fluid in the upper left corner
and warmer than the fluid in the bottom right corner,
causing in both regions notable reverse flow loops and
subsequent monotonic or oscillatory recovery. A small
recirculation bubble, attached to the horizontal wall
downstream from the corner loop was detected in each
corner. Detail plots also depicted another, even smaller
bubble, trapped in each loop. This phenomenon, ac-
companied with strong streamline curvature, was, on the
whole, better captured by the SMC than by the KEM.

The SMC-CL impinging-jet correction damped
somewhat the strength of the streamline loops, but still
much stronger flow reversal and weaker stratification
was predicted by the SMC-CL than by the KEM. The
velocity profiles computed for adiabatic horizontal walls
aty/H = 0.9 and x/L = 0.1 (positions marked by dots in
Figs. 2(d)—(f)) were compared with the experimental
data in Figs. 3 and 4 (passive case only). Fig. 4(b) shows
that the SMC-CL impinging-jet correction decreases the
normal stress perpendicular to the horizontal wall. The
correction, which is still small at y/H = 0.9, improves
the prediction of the velocity profile, as can be seen from
Fig. 3(a) for the horizontal component on which the
effect is most felt. Just downstream of the impingement
at x/L = 0.1 (see Figs. 3(b) and 4(a)), the differences
between the models are more pronounced owing to a
different prediction of position and size of the attached
recirculation bubble. It is no longer clear whether the
impinging-jet correction improves the results, but one
can say that the SMC results are in better overall
(qualitative) agreement with the experiments than the
KEM.

However, the computation results for isothermal
horizontal walls, which corresponds to the experimental
conditions, show that the effect of these boundary con-
ditions on the flow structure is rather large for the
SMCs, as is clearly shown by the other lines in Figs. 2-4.
The isotherms and streamlines predicted by the SMCs
are now almost equal to the KEM results, which means
a large stratification near the horizontal walls and
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y/H=§

z/L=0 z/L=}

Fig. 2. Isotherms (a—c) and streamlines (d—f) in the left-upper quarter of the cavity with adiabatic (-, 1: @ = 0.82, 2: ® = 0.76) and
isothermal (- —, 3: @ = 0.82, 4: @ = 0.76) horizontal walls. The results are obtained by 2D computations applying the KEM (a.d),
SMC-PH (b,e) and SMC-CL (c.f). The pitch between the isotherms is fixed at A@ = 0.03. The dots in (d-f) mark the positions

x/L=0.1and y/H =0.9.

consequently only little recirculation due to damped
turbulence levels and reduced entrainment in the vertical
boundary layers. The conclusions drawn from the
comparison between the experiments and the computa-
tions for the adiabatic horizontal walls do not apply
anymore. In the sequel on the 3D results it will be made
plausible that the differences between the 2D computa-
tion results (isothermal horizontal walls) and the ex-
perimental data are caused by 3D effects. The
resemblance of the adiabatic 2D computation results
with the experiments is fortuitous and the added value of
the SMCs is not as small as might be concluded from the
isothermal 2D computation results.

3.2. Three-dimensional computations

The availability of the measured thermal boundary
conditions at all walls makes it possible to extend the
computations from 2D to 3D. This requires a large
computational effort: the 3D computations converge

very slowly because of some oscillations in the core re-
gion, which do not have a large impact on the prediction
of the flow in the boundary layers and corners. There-
fore, the convergence criterion is relaxed for the 3D
computations.

A selection of results will be shown for two types of
thermal boundary conditions at the lateral walls, cor-
responding to two different experimental approxima-
tions of adiabatic conditions by Opstelten [6] and Dol
et al. [7]: (1) application of (imperfect) insulation, and
(2) imposing a temperature distribution corresponding
to a stratified wall heating minimizing uncontrolled heat
losses and thus improving flow two-dimensionality.
The first situation is referred to as the passive case and
the second as the active case. For both situations, the
measured wall-temperature profiles have been applied in
the computations. Furthermore, computations have also
been performed with perfect adiabatic boundary
conditions at the lateral walls, which is referred to as the
adiabatic case. All computation results shown in this
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0.90 0.95 1.00
y/H

Fig. 3. The horizontal velocity U/V;, at y/H = 0.9 (a) and x/L = 0.1 (b). The symbols (o) are measurements at z/D = 0.5 for the
passive case and the lines are 2D computational results for adiabatic (--- = KEM, — — = SMC-PH, - - = SMC-CL) and isothermal

horizontal walls (- = KEM, —— = SMC-PH, -~ = SMC-CL).

section are for isothermal horizontal and vertical (side)
walls.

Although different wall conditions generated some-
what different flow patterns close to the lateral walls, we
focus here, for brevity, only on the midplane at
z/D = 0.5. Specific attention was given to the corner
flow and the vertical boundary layers, of which the latter
have traditionally been in focus of earlier literature on
natural-convection cavity flows. More details can be
found in [15].

3.2.1. The corner flow

In order to investigate whether 3D effects are re-
sponsible for the large deviations between 2D compu-
tation results and the experimental data obtained for the
passive case, Figs. 2-4 are replotted with superimposed
2D and 3D results (in the mid-plane) enabling a direct
comparison, see Figs. 5-8. In Figs. 5 and 6, the left half
shows KEM results, while the right half shows SMC-CL
results. In the upper half, 2D computation results are
compared with 3D computation results for the passive
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z/L
Fig. 4. The vertical velocity V' /¥, at x/L = 0.1 (a) and its rms fluctuation v.,s/¥%, at y/H = 0.9 (b). The symbols are measurements at
z/D = 0.5 (o = passive, A = active case) and the lines are 2D computational results for adiabatic (- - - = KEM, —— = SMC-PH, - - =
SMC-CL) and isothermal horizontal walls (- = KEM, —— = SMC-PH, —— = SMC-CL).

case. In the lower half, 3D computation results for the
active and adiabatic case are compared. Since all the 3D
computations have been performed on a 90 x 60 x 30
grid, the 2D results presented here are for the 90 x 60
grid to enable comparisons with the same numerical
resolution.

Fig. 5 shows that moving in sequence from the pas-
sive to the active, adiabatic and 2D case, the isotherms
in the left-upper quarter of the mid-depth plane of the

cavity become less curved, with the largest jump between
passive and active, whereas the difference between the
adiabatic and 2D case remains relatively small. Appar-
ently, an increase of heat losses through the lateral walls
tends to increase the curvature of the isotherms, while
the presence of the lateral walls itself is of minor influ-
ence in the mid-plane. Consequently, it can be concluded
that the 3D effect has a thermal nature (heat losses) and
not a mechanical one (friction). A further observation
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2D (—), passive (- -)

active (—), adiabatic (- -)

Fig. 5. Isotherms in the left-upper quarter of the 2D cavity and of the 3D cavity’s midplane (z/D = 0.5). The results are obtained by
2D computations applying the KEM (a: —) and SMC-CL (b: —), and 3D computations applying the KEM (a: — — = passive,c: — =

active, — — = adiabatic case) and SMC-CL (b: — — = passive, d: —

that can be made from Fig. 5 is that the differences be-
tween the KEM and the SMC(-CL), which are small for
the 2D results, also increase with the heat losses. As
expected, the SMC predicts stronger curvature than the
KEM.

The influence of the thermal 3D effect on the
streamlines is depicted in Fig. 6. The streamlines for the
SMC-CL in the passive case show the same kind of
corner structure as was obtained with 2D computations
applying adiabatic boundary conditions at the hori-
zontal walls. On the other hand, the stratification near
the top wall (see Fig. 5) is very large for the passive case,
whereas it was small for the adiabatic 2D computations.
It can be concluded that the destabilizing effect of the

= active, — — = adiabatic case).

heat losses is stronger than the stabilizing effect of the
stratification.

Figs. 7 and 8 validate the corner flow structure as
predicted by the SMC-CL in the passive case by com-
paring the results with the corresponding measurements
and with the other computation results. The SMC-CL
predicts the 3D corner flow better than the KEM does.
In general, the 3D computations for the passive case
yield higher values of velocity components and their
second moments than for the active-case and 2D com-
putations and hence they are in better agreement with
the measurements in that respect. Again, similarity is
observed with the 2D results for adiabatic horizontal
walls, shown in Figs. 3 and 4.
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2D (—), passive (—~)

active (—), adiabatic (- -)

Fig. 6. Streamlines in the left-upper quarter of the 2D cavity and of the 3D cavity’s midplane (z/D = 0.5). The results are obtained by
computations, see the caption of Fig. 5 for an explanation of the line types.

Comparison of the 2D computation results in
Figs. 3,4,7 and 8 (isothermal horizontal walls) illustrates
the effect of grid refinement from 90 x 60 to 180 x 120
(see also Figs. 2, 5 and 6). Even at y/H = 0.9, the coarse
grid results are still quite accurate. However, the differ-
ences are more pronounced at x/L = 0.1, owing to the
streamline curvature which requires fine grids for accu-
rate solutions. Further downstream, e.g., at x/L = 0.3,
the coarse grid is sufficient, just as for the vertical
boundary layers and the core region.

In the horizontal boundary layers, far enough
downstream for the turbulence intensity to become
small, the differences between the KEM and SMC-CL
results are mainly due to convection of upstream dif-
ferences and are small compared to the 3D effect. Fig. 9
shows the horizontal velocity along the top wall at

x/L =0.3 and x/L = 0.5. The 3D computational results
are closer to the measurements than the 2D ones, but the
3D results are still much smoother (i.e., more turbulent)
compared to the measurements, which exhibit notable
oscillations when approaching the wall.

Fig. 10 shows that, more than the velocity compo-
nents themselves (see Figs. 7(b) and 8(a)), the profiles for
their root-mean-square (rms) fluctuations at x/L = 0.1
look reasonably similar for the KEM and the SMC-CL.
This is surprising in view of the known inadequacy of
the KEM for predicting turbulent normal stresses and is
probably due to the relatively low level of turbulence in
these cross-sections. When compared with the
measurements for the passive case, the turbulence level
for y/H < 0.9 is better predicted by the 3D computa-
tions than by the 2D computations, which predict a
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lower level. However, even the 3D computations are
unable to capture the sharp near-wall peaks at
y/H > 0.9, consistent with the prediction of the velocity
components.

3.2.2. The vertical boundary layers

The vertical boundary layers act as the driving force
of the flow and their proper simulation is crucial for
accurate prediction of the rest of the flow downstream

(corner, horizontal boundary layer) and in the cavity
core region. The vertical boundary layers have received
a lot of attention in the literature, both along semi-
infinite plates [10,22,23], and in cavities (e.g., [8]). Fluid
velocity develops a wall-jet like profile with a peak very
close to the wall, which needs to be resolved. Adequate
wall functions are not available and very fine grids are
thus needed in the near-wall region. From a modeller’s
point-of-view, the major problem related to the vertical
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boundary layers is the laminar-to-turbulent transition.
Predicting laminar-to-turbulent transition is a challenge
for any turbulence model, particularly in external
(buoyant or non-buoyant) boundary layers, when the
transition occurs by natural instability and less by
turbulence entrainment from the outer flow. Unlike on
an infinite plate, where the incoming flow can be fully
laminar, even at moderate Rayleigh numbers in en-

closures the circulating fluid always convects some
disturbances and remnants of upstream decaying tur-
bulence, despite possible laminarization along hori-
zontal walls. Hence, the transition in enclosures is
usually associated with a revival of weak background
turbulence when the conditions are favourable (suffi-
ciently strong buoyancy and strain rate). In this re-
spect, the transition in enclosures is less uncertain and
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more suitable for validating the transition performance
of a model. Nevertheless, most models with low-Rey-
nolds-number modifications that perform reasonably
well for transitional forced convection, predict a too
late transition in natural-convection boundary layers.
Some other models are more successful, see e.g., [4]. A
not very elegant but effective remedy is the use of ar-
tificial triggering by injecting a sufficient amount of
turbulent energy into the laminar boundary layer at a

al horizontal walls (- = KEM, — - = SMC-CL) and 3D com-

given point in the upstream part of the developing
vertical boundary layer.

Figs. 11 and 12 show the vertical velocity at several
heights in the hot vertical boundary layer. First, in
Fig. 11, the profiles in the laminar and transitional part
of the boundary layers are shown. At those locations,
the differences between the computational results with
different models and for different boundary conditions
are small owing to the low turbulence intensity, short
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development track and relatively little (accumulated)
influence of the lateral-wall boundary conditions. The
same applies to the measured results. The main differ-
ences appear between the computations and the mea-
surements. The numerical models are all able to predict
the fully laminar (Fig. 11(a)) and fully turbulent (Fig.
11(c)) boundary layer reasonably well, but are incapable
to predict the transition from laminar to turbulent in
accordance with the experimental data (see Fig. 11(b)).

For the hot boundary layer, the measurements indicate a
quick transition somewhere between y/H = 0.3 and
y/H = 0.5, whereas the transition trajectory obtained by
the computations is longer, as it starts already around
y/H =0.1.

Since we focused only on the fully turbulent region,
the local triggering suggested by Henkes [24] is used
here, providing fixed profiles for the turbulent kinetic
energy and its dissipation rate in the areas
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(o = passive, A = active case) and the lines are 2D computational results for isothermal horizontal walls (- = KEM, —— =SMC-CL)
and 3D computations for the passive (- - = KEM, --- = SMC-CL) and active case (—— = KEM, —— = SMC-CL).

(x/L <0.15,y/H < 0.15) and (x/L > 0.85,y/H > 0.85).
Without this triggering the numerical transition would
have been delayed until as far as y/H = 0.7 along the
hot-wall. The chosen triggering method ensures a fully
turbulent boundary layer at y/H = 0.5. Fig. 12 shows in
more detail the profiles at the more downstream loca-
tions in the hot boundary layer, where both the com-
putations and measurements are now fully turbulent.
Fig. 12 shows that the differences between the
measurements for the passive and the active case are
reproduced by the computations. The 2D computation
results are in reasonably good agreement with the
measurements (and computations) for the active case.
The excellent matching of the 3D SMC-CL computation
results for the passive case at y/H = 0.9 ensures that
optimal starting conditions are provided for the corner
flow, in order to make a comparison between compu-
tations and experiments worthwhile.

The experimental data for the vertical velocity in the
hot vertical boundary layer at height y/H = 0.7 are
shown for the passive (Fig. 13(a)) and the active (Fig.
13(b)) case. Also shown are lines that represent the
velocity profiles predicted by 2D and 3D KEM com-
putations at the same location. The computed profiles at
height y/H = 0.3 in the cold vertical boundary layer are
added after reflecting them with respect to the centre of
the cavity. It can be observed that in the active case all
computational results coincide and agree quite well with
the measurements, especially for the maximum velocity
close to the wall. This means that there is a high degree
of two-dimensionality, obtained by the thermally con-
trolled lateral walls. Consequently, the measurements
for the active case are suitable for validation of 2D

computations of the flow considered. Practical details
are given in [7].

The asymmetry caused by the heat losses through the
insulated lateral walls in the passive case is captured well
by the 3D computations. Surprisingly, the reflected 3D
results coincide with the results from the 2D computa-
tions. This means that the flow downwards the passively
heated lateral walls (see [7]) does not slow down the
downward flow in the cold vertical boundary layer. The
additional flow along the lateral walls is counter-bal-
anced purely by an increase in the upward flow by more
than 50% in the hot vertical boundary layer. Hence, the
effect of heat losses through the insulation of the lateral
walls is a significant enhancement of the flow velocity in
the hot vertical boundary layer and, consequently,
stronger impingement and streamline curvature in the
left-upper corner. However, a convincing explanation
for this preference is lacking, since the decreased core
temperature leads to an increase of the local Rayleigh
number in the hot vertical boundary layer and to a de-
crease on the opposite cold-wall. Confusingly, the nu-
merical results published by Ince and Launder [25] show
that the effect of three-dimensionality is mainly a re-
duction of the vertical velocity along the cold-wall. These
authors accounted for heat losses through the lateral
walls by using experimental wall-heat-transfer relations.

Figs. 14 and 15 show the rms of the velocity fluctu-
ations in the hot vertical boundary layer at y/H = 0.5
and y/H = 0.7. The higher the location, the more de-
veloped the boundary layer becomes, and the larger is
the separation between the passive case and the active
case for both the measurements and the computations.
Of course, the turbulence level is largest for the passive
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case, caused by the increased flow velocity, as reported
above. The 2D results coincide with the 3D results for
the active case almost everywhere, except at the outer
edge of the boundary layer, where the 2D SMC-CL re-
sults yield larger normal stresses, especially at
y/H=0.7.

It is well-known that, unlike SMCs, k—¢ models are
unable to cope with turbulence anisotropy, leading to
unrealistically similar components of the normal stress
at the same location. Paradoxically, this would have

been beneficial at y/H = 0.5, although the level pre-
dicted by the KEM is too low. The SMC-CL predicts
the vertical component at this height quite well, except
for the peak very close to the wall that is measured for
both the passive and active configuration and that is
supported by 2D DNS of Janssen [21]. Unfortunately,
the strong anisotropy predicted by the SMC-CL leads
to a much too low level for the horizontal component.
The experimental values of wu, at y/H = 0.5, on the
other hand, are probably too large due to slow oscil-
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lations of the horizontal velocity that have been ob-
served at that location during the measurements. At
y/H = 0.7, the experimental results indicate significant
anisotropy, but the SMC-CL still yields strong over-
predictions, resulting in an overshoot for the vertical
component, whereas the horizontal component is pre-
dicted satisfactory.

Fig. 16 shows the turbulent shear stress in the hot
vertical boundary layer. At y/H = 0.5, the computations

underpredict the experimental results, but as mentioned
above, the experimental correlations at this location
containing the horizontal velocity fluctuation u are
probably too large. At y/H = 0.7, the situation is op-
posite, although the discrepancy is less serious and the
differences between the measurements for the passive
and active case are predicted qualitatively correct. The
2D results are again close to the active 3D results. At
y/H = 0.9, the shear stress is predicted very well by the
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3D computations, whereas the 2D computations un-
derpredict the turbulence level.

4. Conclusions
The computational study of turbulent natural con-

vection in a near-cubic cavity with differentially heated
isothermal side walls provides useful and novel infor-

mation on the flow pattern and turbulence characteris-
tics in this generic type of buoyancy-driven internal flow
for several sets of boundary conditions. Considered are
two types of horizontal walls, adiabatic and isothermal
(cold bottom and hot top wall), and two types of lateral
walls, imperfectly insulated (passive case) and nearly
adiabatic (active case). The latter type is realized with
stratified wall heating by which heat losses are com-
pensated to ensure a near-2D thermal situation. An



H.S. Dol, K. Hanjali¢ | International Journal of Heat and Mass Transfer 44 (2001) 2323-2344 2341

0.04

0.03

(@)

0.01
OE
0 0.25
0.06
(b)
0.04 |22
e}
S
g
=
0.02}
0! ]
0.25

Fig. 15. The horizontal (a) and vertical (b) components of the rms velocity fluctuation u; s /¥ at y/H = 0.7. For an explanation of the

symbols and line types, see the caption of Fig. 14.

SMC and a KEM, both with low-Reynolds-number
modifications, are used for 2D and 3D numerical com-
putations of the flow. The following conclusions are
drawn:

1. The 3D computations with the KEM of Chien [12]
and with the SMC of Peeters and Henkes [10], both with
low-Reynolds-number modifications allowing integra-
tion up to the wall, show realistic reproduction of the
general mean flow pattern. The SMC, particularly with
the improved model of Craft and Launder [11] for the
pressure-reflection term, shows to be superior to the

KEM in capturing the strongly curved flow pattern in
the corner regions, as well as in reproducing 3D effects
owing to heat losses through the imperfectly insulated
lateral walls. Despite several known deficiencies of both
models used, the computational results are believed to
yield useful qualitative information about the predictive
performance of each class of models in enclosed side-
heated buoyancy-driven flows.

2. Because of needs to integrate the equations
up to the wall and to resolve thin boundary layers
with a sufficiently fine computational grid, the 3D
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Appendix A. Second-moment closure model
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In the above equation for /;, 0 runs through a horizontal
plane intersecting the fixed point where /; is to be de-
termined, ¢ runs through a side half of the vertical plane
intersecting the mentioned point and the mentioned

horizontal plane at angle 6, and / is the distance between
the fixed internal point and the running wall point.
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